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Solutions to the one- and two-dimensional Burgers’ equations with moderate to severe 
internal and boundary gradients have been used to compare minimum truncation error three, 
five-, and seven-point finite difference schemes with linear, quadratic, and cubic rectangular 
finite element schemes. The various schemes demonstrate the theoretically predicted 
convergence rates if the mesh is sufficiently refined. In one dimension the quadratic finite 
element scheme and the five-point finite difference scheme are computationally the most 
eficient. In multidimensions the finite element method is less economical than the finite 
difference method even if the group representation is used for the convective terms. In two 
dimensions the linear group finite element representation and the three-point finite difference 
scheme are computationally the most efficient on a coarse mesh or if a severe gradient is 
present. 

1. INTRODUCTION 

Comparisons of finite difference and finite element methods have been made 
previously for simple linear partial differential equations [ 1, 21 and for nonlinear one- 
dimensional problems [ 3,4 ] of restricted application. 

Also realistic fluid flow problems, but with little or no dissipation, have been 
considered. For example, Haidvogel et al. [S] have compared the spectral, finite 
difference and finite element methods applied to open ocean modelling. Orszag [6] 
and Gresho et al. [ 71 have used passive scalar convection (the rotating cone problem) 
to compare the spectral and finite element methods respectively with the finite 
difference method. However in these comparisons nonlinearities were either not 
present or played a minor role. 

Boundary layer flows, both laminar and turbulent, have been used to compare the 
finite element and finite difference methods [8-lo] and spectral methods \ 111. 

We would like to be able to compare finite element and finite difference methods 
for dissipative flow problems that strictly require solution of the Navier-Stokes 
equations. However to make a precise comparison an easily computed exact solution 
is necessary. For interesting problems governed by the Navier-Stokes equations, 
exact solutions are not available. As a consequence comparisons have often been 
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made 112) in relation to gross features of the flow pattern that are known from 
experiments. 

Here we simplify the Navier-Stokes equations until an exact solution is available 
but adjust the boundary conditions so that the relatively severe gradients associated 
with the interaction of the nonlinear convective terms and the dissipative viscous 
terms are present. In this way it is anticipated that the more important behaviour 
determined by the Navier-Stokes equations is retained. 

Burger’s equations are an appropriate simplified form of the Navier-Stokes 
equations. In one and two dimensions these are 

and 

u, + UU,~ - u,JRe = 0, (1) 

u, + uu, + uu,. - (u,, + u,,)/Re = 0, 

u, + uv, + uu, - (u,, + Uy,)/Re = 0. 
(2) 

Burger’s equations have the same “convective” and “dissipative” form as the incom- 
pressible Navier-Stokes equations, although the pressure gradient terms are not 
retained. Also a solution to Burgers’ equation would not, in general, satisfy the 
continuity equation. 

However, for the present purpose, Burgers’ equations possess the desirable attribute 
that exact solutions can be constructed readily by invoking the Cole-Hopf transfor- 
mation 1131. This is true in both one I14 1 or more [ 15 ] dimensions. 

We are employing Burgers’ equations here as a qualitatively correct approximation 
of the Navier-Stokes equations. However, for specific flow problems, such as weak 
shock propagation, acoustic attenuation in fogs, compressible turbulence, and even 
continuum traffic simulation, Burger’s equations are the appropriate governing 
equations [ 131. 

Solutions to problems with moderate to severe internal and boundary gradients 
governed by the one- and two-dimensional Burgers’ equations will be used to 
compare the accuracy, economy, and computational efficiency of linear, quadratic, 
and cubic finite element methods and minimum truncation error three-, live-, and 
seven-point finite difference methods. The “severe” gradients considered here are still 
relatively moderate in comparison with those associated with strong shocks, etc. 

It would be possible to seek some quantitative measure of the computational 
efficiency (CE), e.g., 

CE = k/t&, (3) 

where r is the execution (CPU) time or, perhaps, an operation count and E is the 
error in the computed solution in some appropriate norm. However, here we will infer 
the computational efficiency by comparing the accuracy for nominally the same 
execution time or vice versa. 

We expect that results from the present study will help in the choice of an 
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appropriate method and in the appropriate order of the computational scheme when 
solving “real” flow problems. 

It is well known that if centered finite difference or conventional finite element 
formulae are used to represent the convective terms, e.g., nnxr UU, in Eqs. (1) and (2) 
then spatial oscillations will occur if the spatial mesh is too coarse for large values of 
Re (cell Reynolds number effect). 

In the present investigation no attempt has been made to include asymmetric (or 
upwinded) formulae. Therefore the mesh sizes considered have generally been kept 
smaller than the cell Reynolds number limit. However, since the severity of the 
gradients increases with Reynolds number, this limit is also necessary to achieve 
reasonable accuracy. 

The underlying theory of the finite element method, in particular, has received 
considerable attention so that it is possible to estimate convergence rates [ 16 ] with 
some precision. Often the theoretical results are restricted to linear problems that can 
be given a variational interpretation. A secondary purpose of this investigation is to 
directly measure the convergence rates of a highly nonlinear problem to see if the 
more restricted theoretical results can be extended to more complex governing 
equations. 

It is generally accepted [ 171 that the finite element is less economical than the 
finite difference method in more than one dimension because of the greater number of 
connected nodes. This problem is aggravated in the treatment of nonlinearities, like 
the convective terms, by the conventional finite element method. It will be shown 
that, by considering the divergence form of the convective terms and by introducing a 
groupfinite element representation [ 181, it is possible to overcome this further lack of 
economy. In many situations the accuracy is increased as well. 

2. ONE-DIMENSIONAL COMPARISON 

Two problems will be utilised; first the propagating shock wave is characterised by 
a severe internal gradient in U. Both steady-state and unsteady solutions will be 
considered. Second the propagating sine wave is characterised by a severe gradient 
adjacent to the right-hand boundary. Only unsteady solutions of this problem will be 
examined. 

2.1. Propagating Shock Wave Problem 

Burgers’ equation models, in the simplest manner possible, the balance between 
nonlinear convection and viscous dissipation. The evolution of this balance for a 
propagating shock wave is shown in Fig. 1. At t = 0 the solution is 

u(x < 0,O) = 1, u(x > 0,O) = 0, (4) 

i.e., a “shock” centered at x = 0. Subsequently the shock convects to the right and the 
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FIG. I. Exact solutions of the one-dimensional propagating shock problem. 

sharp front is smoothed by the dissipative term, u,JRe. At Re = 10 the distinctive 
character of the shock is quickly obliterated. At larger values of Re (e.g., Re = 50), 
the shock can still be identified as a region in which the solution changes rapidly. 

The solutions shown in Fig. 1 are exact solutions of Eq. (1) that satisfy Eq. (4) and 
u(-co, 0) = 1, u(co, 0) = 0. To obtain computational solutions of Eq. (1) the 
following boundary conditions have been applied, 

u(x,, f> = 1, u(x,, t) = 0, (5) 

where xL and xa are chosen to be sufficiently large so that Eq. (5) is satisfied, e.g., 
-xL =x, = 2.0 for Re = 10 and t < 0.5. 

Although the method of setting x, and xR is satisfactory for unsteady solutions of 
Eq. (1) close to t = 0, the computational region becomes excessive if t,,, is large. 
This problem can be avoided by considering a modified form of Eq. (l), 

u, + (u - a) u, - u,JRe = 0, (6) 

where a is an adjustable constant. 
The parameter a can be interpreted as the speed of propagation of a coordinate 

system imposed on the solution of Eq. (1). If a = 0.5 the coordinate system is 
propagating at the same speed as the shock solution of Eq. (1). Consequently the 
average convective motion is frozen and the shock remains centered at x = 0 for all 
time. As a result computational steady-state solutions of Eq. (6) can be obtained 
without the need for excessive values of xL and xR. In addition the exact steady-state 
solution of Eq. (6), with a = 0.5, is particularly simple, 

u = 0.5 - 0.5 tanh(0.25 Rex). (7) 
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A conventional Galerkin finite element spatial representation of Eq. (6) can be 
written 

Mu, = S = (C/Re + aE - B)u, (8) 

where elements of the various matrices are given by 

ekj = (Nk 3 dNj/dX), and b,i = y Ui(Nk 3 Ni dNf/dx). (9) 

In Eq. (9) Nj(x) and Nk( x are linear, quadratic, or cubic one-dimensional elements. ) 
The inner product (a, b) is evaluated as 

(6 b) =i:” ab dx. 

It is apparent that B, in Eq. (8), depends on the solution. Consequently B must be 
reevaluated at every time step. In contrast the other matrices M, C, and E can be 
evaluated once and for all. 

Also the matrix elements b, depend on a summation over all contributing nodes in 
the finite element. This additional algebraic complexity will introduce a substantial 
increase in execution time in more than one dimension (Section 3). The additional 
algebraic complexity and consequent increase in execution time can be avoided by 
adopting a group representation [ 181. 

This consists of two parts. First Eq. (6) is put into divergence form, i.e., 

u, + 0.5~: - au, - u,JRe = 0. (10) 

Second a supplementary trial solution is introduced to represent the group of terms 
u*, i.e., 

u* = \‘ N,(x) u,;. 
T 

After application of a Galerkin finite element formulation, the following equation is 
obtained in lieu of Eq. (8) 

Mu, = S = (C/Re + aE) u - O.SEu*. (12) 

The improved economy of using the group representation in one dimension is 
relatively minor; a much larger improvement will be demonstrated when solving the 
two-dimensional Burgers’ equation (Section 3). 

The idea of directly representing a group or product, like u*, seems to have been 
proposed first by Swartz and Wendroff [ 191. The present application follows the 
independent use of the same idea by Fletcher and Holt [20] as an adjunct to the 

5Sl/51/1 I2 
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orthonormal (spectral) method of integral relations. More recently the group 
representation has been used to solve a first-order hyperbolic model equation 121 ] for 
inviscid [ 221 and viscous 1231 compressible flow using a least-squares and an ADI 
Galerkin finite element formulation, respectively. 

Christie ef al. [24] have shown theoretically and numerically that the greater 
economy of the group representation can be obtained without u reduction in accuracy. 
For the one-dimensional model equation 

u, + uu, = 0 

with linear elements they show that the truncation error for a uniform grid is fourth 
order whereas the truncation error for the conventional Galerkin formulation is 
second order. For two-dimensional problems the group representation of first 
derivatives with linear rectangular elements on a uniform grid also produces afourth- 
order truncation error 123 1. 

A possible disadvantage of the group representation occurs in the treatment of 
unsteady flow problems with little or no natural dissipation, i.e., the weather 
prediction problem. The conventional Galerkin formulation conserves quadratic 
properties like enstrophy, etc. (251 and this tends to suppress the onset of nonlinear 
instabilities which limit the temporal extent of the solution. In contrast the group 
representation does not preserve quadratic properties, typically. However, for 
problems with significant dissipation, like the present situation, the lack of quadratic 
conservation causes no difficulty. 

Three-, live-, and seven-point finite difference schemes have been obtained by 
minimising the truncation error of the spatial terms. For centered differences on a 
uniform mesh the algebraic formulae that represent U, and u,, are shown in Table I. 

TABLE I 

Finite Difference Formulae on a Uniform Grid 

Finite 
Difference 
Formula 

Three point 

Five point 

Seven point 

u, UC, 

C-u, , + uk + ,)W~ (u, I ~ Zu, + uk / ,)/Ax-’ 

(Uk * ~ 8% I + %+ I (-uk L + 16u, , - 3021, 
-u,.:)/12dx + 16u,,,-u,,,)/l2Ax-’ 

(-uk ,+ 9u, 2-64, , (2u, 3- 27u, > + 27Ou, , 
+ 45u, ( I - 9u,, z + Uk, ,)/6OAx ~ 49ou, + 27ou, i , - 27u,, T 

+ 2u, + J/ 18OA.P 
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To solve the system of ordinary differential equations represented by Eq. (8) or 
(12), the following implicit scheme has been employed, 

M(u”+’ -u”)=dt(l -8)S”+AtOS”+‘. 

The choice 8 = 0.5 gives the Crank-Nicolson scheme. 

(13) 

Steady-state solutions of Eqs. (8) and (12) have also been obtained [26 ] using 
second- and fourth-order Runge-Kutta schemes. However, the stability restriction on 
the time step caused the overall execution times (to reach the steady state) to be of 
the order of 30 to 50 times those produced by Eq. (13). Even for the transient 
propagating shock problem the Crank-Nicolson scheme was more economical for the 
same accuracy than either of the Runge-Kutta schemes. This was true whether the 
mass matrix M was present (finite element) or not (finite difference). 

2.1.1, Convergence Properties 

The theoretical spatial convergence rates for the various finite element and finite 
difference schemes are shown in Table II. The theoretical convergence rates for the 
finite element schemes have been obtained from the corresponding results for linear 
elliptic boundary value problems [16]. In contrast the current problem is highly 
nonlinear and parabolic. The convergence rates for the finite difference schemes are 
obtained from the truncation errors. 

The variation of the error in the L, norm with mesh size for steady-state solutions 
of Eq. (6) with (r = 0.5 is shown in Fig. 2. The results were generated with the 
conventional Galerkin finite element formulation, Eq. (8), on a uniform grid. The 
error in the L, norm is defined as follows: 

(14) 

The results presented in Fig. 2 indicate that the theoretical convergence rates are 
achieved if the mesh is sufficiently reJined. The coarsest mesh corresponds to a cell 
Reynolds number of 4. For this mesh quadratic and cubic elements produce a slightly 
higher accuracy, in relation to the more refined mesh, than predicted theoretically. 

TABLE II 

Theoretical Spatial Convergence Rates 

Finite Spatial 
Difference Convergence 

Method Rate 

Finite 
Element 
Method 

Spatial 
Convergence 

Rate 

Three point 
Five point 
Seven point 

Ax’ 
Ax” 
Ax” 

Linear 
Quadratic 
Cubic 
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FIG. 2. Spatial convergence properties for conventional finite element steady-state solutions of Eq. 
(8); Re = IO. 

It is of interest that cubic elements only produce more accurate results than 
quadratic elements on a very refined mesh. For most practical calculations we would 
expect an error of 1 o/o, i.e., -log,, 11 u - u,,112 = 2, to be acceptable. In contrast the 
superior accuracy of cubic elements is only occurring for errors one to two orders oj 
magnitude less than this. 

Convergence results at Re = 1 and 100 (not shown), although displaced to 
different absolute error levels, demonstrate the same trend as in Fig. 2 and confirm 
the theoretically predicted convergence rates on a sufficiently refined mesh. 

Convergence results for the group finite element representation, Eqs. (lOt( 12), are 
shown in Fig. 3. The conditions for Fig. 3 are the same as for Fig. 2. It is clear that 

1.01 I 
0 1.0 2.0 

-log,, Ax 

FIG. 3. Spatial convergence properties for group representation finite element steady-state solutions 
of Eq. (12); Re = 10. 
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the group representation also achieves the theoretical convergence rates on a refined 
mesh. 

The group representation is as accurate as the conventional finite element 
formulation except for linear elements on a coarse mesh. Since the group represen- 
tation is more economical than the conventional finite element formulation, it will be 
used in the rest of Section 2. 

Convergence results for the finite difference schemes, applied to Eq. (lo), are 
shown in Fig. 4. The rms error is defined by 

(15) 

where N, is the number of mesh points at which a computational solution is sought 
(i.e., all internal points). As with the finite element results the theoretically predicted 
convergence rates (Table II) were achieved. 

The spatial convergence results shown in Figs. 2-4 have been for the steady-state 
solutions. Since Burgers’ equation is parabolic it is of interest to utilise the solution at 
small time to see if the theoretical convergence rates can still be obtained. 

Lack of smoothness of the initial data is expected to limit the convergence rate 
[ 16, 17 1. To avoid this effect the discontinuous initial condition given by Eq. (4) was 
replaced by the exact solution at t = 0.01. The time step in Eq. (13) was kept 
sufficiently small so that only spatial discretisation contributed to the errors in the 
solution. It was found 1261 that theoretical convergence rates were substantially 
achieved although with less precision than shown in Figs. 2-4. 

1.0’ 
0 1.0 2.0 

-log,,, Ax 

FIG. 4. Spatial convergence properties for finite difference steady-state solutions of Eq. (12): 
Re = 10. 
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When the discontinuous initial conditions, Eq. (4) and u(0) = 0.5, were used there 
was a significant effect on the convergence properties of the higher order schemes. 
This is shown in Fig. 5. It can be seen that the convergence rate for cubic elements is 
reduced to second order. This was also found to be the case for the live- and seven- 
point finite difference schemes. This result is not unexpected since Majda and Osher 
[ 271 have established that discontinuous initial data determine the rate of 
convergence of a model hyperbolic equation independently of the order of the 
difference scheme. Although the accuracy for cubic elements is higher than for linear 
elements (Fig. 5), the accuracy of five- and seven-point finite difference schemes was 
no greater than for the three-point finite difference scheme. 

The convergence results presented in Figs. 2-5 also indicate the accuracy achieved 
by the various schemes. 

2.1.2. Computational Eflciency 

In determining the computational efficiency the execution time of the various 
schemes is important. A comparison of the relative execution time per time step is 
provided by Table III. The results were obtained by integrating for 300 time steps on 
a uniform grid of 121 points at Re = 100. The comparison is equally valid for the 
transient and steady-state solutions. The results shown in Table III were obtained on 
a Perkin-Elmer 3220 computer. 

Explicit finite difference schemes are the most economical group, mainly due to the 
replacement of M in Eq. (8) by I. Explicit finite element schemes (2R-K) require a 
once-only factorisation of M and two evaluations of M-‘S (see Eq. 12) per time step. 
Explicit schemes are typically twice as economical as implicit schemes. 

For the implicit schemes, Eq. (13) is manipulated to give an augmented matrix 
MA on the left-hand side. An element of MA is given by 

makj = mkj - At@ aSkl&,. (16) 

-log,o Ax 

FIG. 5. Spatial convergence properties for group finite element representation with discontinuous 
initial data; t = 0.50, Re = 10. 
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TABLE III 

Relative Execution Time Comparison 

Relative Execution Time per Time Step 

Method 

Finite element 
Linear 
Quadratic 
Cubic 

Finite difference 

Three point 
Five point 
Seven point 

Explicit (2R-K)” Implicit (C-N)h 

I.15 2.12 
1.50 2.35 
I.65 2.62 

1.00 2.21 
1.31 2.65 
1.62 3.21 

’ 2R-K = second-order Runge-Kutta. 
b C-N = Crank-Nicolson (0 = 0.5 in Eq. 13). 

Since MA depends on the solution, through aS,Jau,, it must be factorised and 
MA-‘!3 evaluated at every time step. These two steps are executed by a generalised 
Thomas algorithm which takes advantage of the narrower bandwidth associated with 
mid-side nodes of quadratic and cubic finite elements. Consequently the higher order, 
implicit finite element schemes are more economical than higher order, implicit finite 
difference schemes. 

The computational efficiency of a given scheme will be interpreted as the accuracy 
that can be achieved per unit of execution time. This will depend on the severity of 
any gradients in the solution and on whether the problem is inherently steady or 
unsteady. 

For the steady-state problem, Eq. (6) with a = 0.5, the computational efficiency 
has been assessed using a 12 1 node variable mesh. The mesh size varied 
geometrically between Ax = 0.02 at the shock and Ax = 0.20 adjacent to the boun- 
daries. Equation (13) has been integrated numerically using a variable time step, 
implicit scheme from t = 0.01 to t = 8.00 with Re = 100. At t = 8.00 both the 
computational and exact solutions have reached the steady state. Results are shown 
in Table IV. To permit a comparison of the finite element and finite difference 
schemes the nodal point rms error has been utilised. 

For the propagating shock problem (Fig. 1) at high Reynolds number the 
accuracy, and hence the computational efficiency, is dominated by the solution 
adjacenl to the shock. Generally the higher order schemes are more accurate (and 
more efficient) than the three-point schemes. For the particular mesh and problem 
considered the five-point finite dlflerence scheme is the most eflcient. 

To compare the computational efficiency of various schemes for a parabolic 
problem, Eq. (13) with a = 0 has been integrated from t = 0.01 to t = 0.50 on a 
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TABLE IV 

Summary of Results for 121 Node Variable Grid “Steady” 
Solution at Re = 100 

Method At,,, 

Number of Relative 
Time Steps Exec. Time 

Finite element 

Linear 
Quadratic 
Cubic 

0.32 32 I.0 0.94 x 10 ’ 
0.32 32 1.1 I 0.50 x IO X 
0.16 56 2.1 I 0.32 x IO ’ 

Finite difference 

Three point 0.32 32 
Five point 0.32 32 
Seven point 0.32 32 

1.06 0.93 x IO ’ 
1.22 0.30 x 10 ’ 
1.50 0.32 x IO ’ 

uniform grid at Re = 100. The accuracy that can be achieved for a given execution 
time depends on the choice for both the temporal and spatial step sizes. For the 
results shown in Table V, these have been chosen so that the accuracy is maximised 
for an execution time of approximately the same magnitude as for the linear finite 
element method. 

The results indicate that higher order schemes produce more accurate results than 
lower order schemes. The quadratic finite element scheme is the most efJicient for this 
case. An essential difference between the finite element results shown in Tables IV 
and V is that M plays no part in the accuracy of the steady-state results (Table IV). 
In contrast the superior accuracy of the finite element results shown in Table V 

TABLE V 

Summary of Results for a Uniform Mesh “Unsteady” Solution of the Propagating Shock Problem at 
Re = 100 

Method 

No. of 
Time 
Steps 

No. of 
Points 

Relative 
Execution 

Time 

Finite element 

Linear 
Quadratic 
Cubic 

Finite difference 

Three point 
Five point 
Seven point 

0.008 67 I81 1.00 2.03 x IO ’ 
0.004 125 91 I .09 0.83 x IO ’ 
0.004 125 91 1.25 1.93 x IO ’ 

0.008 67 I81 1.07 4.79 x 10~ J 
0.004 12.5 91 1.24 0.85 x 10~ ’ 
0.004 125 91 1.51 0.73 x 10 J 
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comes, in part, from M. The role of M in increasing the accuracy of the finite element 
method has been noted elsewhere [7, 281. It is possible [ 1 ] that the higher order 
spatial schemes would be relatively more efficient when used with higher order 
temporal schemes. This has not been pursued here. 

2.2. Propagating Sine Wave Problem 

The propagating shock problem, whether governed by Eq. (1) or (6), produces 
solutions that are dominated by an internal gradient (Fig. 1). In contrast the 
propagating sine wave problem produces solutions that are characterised by a 
gradient adjacent to the right-hand boundary. 

Equation (1) is solved with the following initial and boundary conditions, 

and 

u(x, 0) = sin 71x, o<x< 1, 

u(0, t) = u( 1, t) = 0. (17) 

The exact solution [29] for Re = 48 is shown in Fig. 6; only the downstream region 
is indicated. As time increases the top part of the sine wave is convected downstream 
and the amplitude diminishes under the influence of the dissipative term u,JRe. At 
t = 0.5 a well-defined boundary Zayer has developed adjacent to the downstream 
boundary. Eventually (at t = 00) u will be zero everywhere. 

FIG. 6. Exact solutions of the propagating sine wave problem; Re = 48. 



172 C. A. J. FLETCHER 

5.0- 

n 
= 

;3.0- 
2 

= 

0 

$ 
-i 

FIG. 7. Spatial convergence properties for group representation finite element solutions of the 
propagating sine wave; Re = 48; t = 0.50. 

Typical coarse-mesh solutions, Ax = l/12, are shown in Fig. 6. It can be seen that 
the largest errors in the computational solution occur in the boundary layer region. 
The linear finite element solutions are clearly more accurate than the three-point 
finite difference solutions. 

2.2.1. Convergence Properties 

Convergence results for finite element solutions of Eqs. (12) and (17) on a uniform 
grid at Re = 48 are shown in Fig. 7. It is apparent that the convergence rates for the 
higher order finite element methods do not achieve the theoretical convergence rates. 
Both quadratic and cubic elements are showing a nominally second-order 
convergence rate. However both schemes are more accurate than the linear finite 
element scheme. 

Corresponding convergence rates for three- and live-point finite difference schemes 
are shown in Fig. 8. Both schemes are seen to be of nominally second order, although 
the live-point scheme is considerably more accurate. 

I 
l /I 

I 
,‘6 

I/ ,o 
‘-A: 

I 

2’ 

I 4 
14 1.5 2.0 2.5 

-log,& 

FIG. 8. Spatial convergence properties for finite difference solutions of the propagating sine wave; 
Re = 48; I = 0.50. 
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A comparison of the results presented in Figs. 7 and 8 to those in Figs. 2-5 
indicates that severe boundary gradients reduce the convergence rate more than 
severe internal gradients. 

2.2.2. Computational Eflciency 

The relative economies of the various schemes shown in Table III also apply to the 
propagating sine wave problem. 

Results are presented in Table VI to compare the computational efficiency of the 
various schemes. The solutions were obtained on a uniform grid at Re = 48 after a 
Crank-Nicolson (0 = 0.5) integration from t = 0 to t = 0.50. The step sizes, At and 
Ax, are chosen to give the smallest execution time for an accuracy comparable to that 
of the linear finite element scheme. 

The three finite element schemes require essentially the same execution time but 
higher order schemes produce more accurate and hence more efficient solutions. The 
higher order finite difference schemes are less efficient for this problem because of a 
relatively large execution time. This follows directly from the maximum time step for 
these categories. This restriction was found necessary to avoid the growth of 
instabilities in the region of the severe boundary gradient. 

All the finite element results shown in Fig. 7 and Table VI have used the group 
representation. Christie et al. [24] have found that the group representation gives 
more accurate solutions than the conventional finite element method for the 
propagating sine wave problem. They used a Petrov-Galerkin (upwind) formulation 
with quadratic trial solutions and cubic test functions for Re = 100 and 10,000 and 
Ax = l/18. 

The solutions of the one-dimensional Burgers’ equation for the propagating shock 
and propagating sine wave problems have indicated that quadratic finite element 

TABLE VI 

Uniform Grid Solution of the Propagating Sine Wave Problem 
Re = 48, I = 0.50 

Method 

Finite element 

Linear 
Quadratic 
Cubic 

Finite difference 

Three point 
Five point 
Seven point 

At,,, 

0.016 
0.016 
0.016 

0.016 
0.004 
0.004 

No. of 
Time 
Steps 

35 
35 
35 

35 
127 
127 

No. of 
Points 

49 
41 
37 

121 
57 
37 

Relative 
Execution 

Time 

1.00 
0.97 
0.97 

2.16 
5.47 
4.40 

II u - ~,An~ 

1.46 x lo-’ 
1.35 x 10 1 
1.00 x 10-l 

1.45 x lo-” 
1.20 x 10 3 
1.69 x lo-’ 
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schemes or five-point finite difference schemes are generally the most efficient. 
However, there is no indication of overwhelming superiority of the finite element or 
finite difference methods for all problems, 

3. MULTIDIMENSIONAL COMPARISON 

In this section we compare the finite difference and finite element methods in more 
than one dimension. First, we infer the relative economy of the finite difference and 
finite element methods from a consideration of the number of contributing nodes in 
the equation that is produced after application of the finite difference or finite element 
method. This general approach allows the effect of increased order or increased 
dimension on the relative economy to be clarified. 

Second, solutions of the two-dimensional Burgers’ equation are obtained to provide 
a direct measure of both the execution time and accuracy. The solutions have been 
obtained with linear and quadratic finite elements and three- and live-point finite 
difference schemes for steady problems with both internal and boundary gradients 
predominantly in the x direction. 

3.1. Number of Contributing Nodes 

The application of the Galerkin finite element method implies an integration over 
all the dimensions of the problem. This automatically includes all nodes (unless there 
is fortuitous cancellation), that are in the same element as the Galerkin node, in the 
subsequent algebraic expression. This situation may be illustrated by the linear finite 
element representation for u,, in two dimensions. On a uniform mesh the following 
expression is obtained: 

1 
u - IX * dx2 

I 
~(ui~,.j+I-2u,,j+,+ui+,,,j+,if~{ui~,,,i-2ui.i+ui+,.i) 

+$/Ui~~,j~~~2uf,j-l fUi+l,j-1 Il. (18) 

Subscripts i and j correspond to the x and 4’ directions, respectively. Part of the 
formula is recognisable as the one-dimensional formula that would be produced by a 
three-point finite difference representation. However the one-dimensional formula is 
distributed in the normal direction by the operator (b, 5, b). Consequently linear 
finite elements in two dimensions generate nine-point formulae in contrast to the 
three-point finite difference formulae. In three dimensions linear finite elements 
generate twenty-seven-point formulae. 

A consequence of the integral nature of the finite element method is that more 
algebraic manipulation will be required in multidimensions than with a finite 
difference method. The greater algebraic manipulation translates into a considerably 
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increased execution time. To achieve a comparable computational efficiency there 
must be a compensating superiority in the accuracy of the finite element solution. 

It is known that the application of the Galerkin finite element formulation to 
U, + u,, = 0 produces a fourth-order accurate expression on a uniform two- 
dimensional grid. The corresponding three-point finite difference formula is only 
second-order accurate. However the higher accuracy comes from fortuitous 
cancellation associated with the coefficients in the perpendicular operator (i, $, i), 
and does not extend to the inclusion of u,~, etc. 

An appreciation of the relative algebraic complexity (and hence economy) of the 
finite element and finite difference methods can be obtained by considering the 
solution of Laplace’s equation, 

v2u = 0. (19) 

Application of the finite element or finite difference methods results in a system of 
algebraic equations that can be written 

Ku=B. (20) 

In Eq. (20) u is the solution sought, B arises from the known u values on the 
boundary, and K contains the algebraic coefficients arising from the application of 
the finite element or finite difference method. Each row of K contains as many 
nonzero terms as there are connected nodes (discounting cancellation). 

If Eq. (20) is solved iteratively then the execution time per iteration would be 
proportional to the number of nonzero terms in each row. For the finite difference 
method applied to internal nodes not connected to the boundary all rows will contain 

TABLE VII 

Average Number of Nonzero Terms in “Internal” Rows of I< 

Lagrangian Finite Element Finite Difference 

Order of Av. no. of 12 Point Number of 
Dimension Shape Function Terms Formula Terms 

I Linear 3 3 3 
Quadratic 4 5 5 
Cubic 5 1 7 

2 
Linear 9 3 5 
Quadratic 17 5 9 
Cubic 29 7 13 

3 
Linear 27 3 7 
Quadratic 70 5 13 
Cubic 140 7 19 
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the same number of nonzero terms. If Eq. (20) is solved by a direct bandwidth solver, 
the execution time will be proportional to the square of the number of nonzero terms 
in each row [ 301. 

For various dimensions and orders of representation the average number of 
nonzero terms in each row is shown in Table VII. The finite element values have been 
calculated from Lagrangian shape functions. For quadratic and cubic shape functions 
an rms average number of nonzero terms per row has been computed. The number 
for both formulations is appropriate to internal nodes which have no connected 
boundary nodes. For the higher dimensional finite difference schemes three-, five-. 
and seven-point formulae have been assumed in each coordinate direction. 

In one dimension the finite element method has fewer nonzero terms on average 
than the finite difference method. Although, as Table II indicates, a cubic finite 
element formulation is expected to generate solutions of comparable accuracy to a 
five-point finite difference scheme. If the comparison of the number of nonzero terms 
is made for comparable convergence rates (Table II), then the one-dimensional finite 
difference and finite element methods are equally economical. 

In more than one dimension the tinite element method has significantly, more 
nonzero terms per row than the finite difference method. The difference becomes 
substantially greater if higher order elements are considered. Thus the use of higher 
order elements in multidimensions will need to generate solutions of very high 
accuracy if competitive computational efficiency with the finite difference method is 
to be achieved. 

The comparison made in Table VII is appropriate to linear terms like u,,~ and u,,, 
in Eq. (2). However the conventional finite element treatment of the convective terms, 
e.g., UU, or VU, in Eq. (2), introduces a further increase in algebraic complexity in 
that each nodal contribution to u can be linked to each nodal contribution to u,. in 
the same element. In viscous compressible flow 1231 triple products, like puu,, occur 
which produces an even greater increase in algebraic complexity. Fortunately the 
group representation I18 1, when applicable, restores the level of algebraic complexity 
shown in Table VII. 

3.2. Two-Dimensional Burgers’ Equation 

In this section the two-dimensional Burgers’ equation (2) will be used to see if the 
finite element method can provide sufficiently accurate solutions to compensate for 
the reduced economy discussed in Section 3.1. In view of the previous remarks 
concerning nonlinear terms, the linear conventional, linear group, and quadratic 
group finite element representations will be compared to the three-point and five-point 
finite difference methods. 

As with the one-dimensional problems, the two-dimensional Burgers’ equations will 
be solved for problems that are dominated by either internal or boundary gradients. 
This will make them more representative of “difficult” fluid-dynamic problems. 

In order to make precise determinations of the error in the computational solution 
it is necessary to have exact solutions of Burgers’ equations. An exact solution of the 
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two-dimensional Burgers’ equations can be generated efficiently Il.5 1 by making use 
of the Cole-Hopf transformation [ 131, 

and (21) 

where G+ is the solution of 

$4 = 4x, + fi$Y (22) 

In the present investigation only steady-state solutions of Eq. (2) will be considered. 
Consequently if a general steady-state solution of Eq. (22) is postulated I15 1, 
evaluation of Eq. (21) gives the following expressions for u and v, 

2 

U=-Re 
a1 t a3 y + ka,(exp(x -x0)) - exp(-k(x - x,))} cos kq’ 

a, + a,x + a,y t a,xy t a,{exp(k(x-x,)) t exp(-U-x,))} sin k~v I ’ 

(23) 

and 

2 

v=-Re L 

a2 t a,x - ka,(exp(k(x -x0)) t exp(-k(x -x0))) sin ky 

I a, t alx t a,y t a,xy t a,(exp(k(x-x0)) t exp(-k(x-x0))} cosky * 

(24) 

Equations (23) and (24) are solutions of the two-dimensional Burgers’ equations (2). 
By varying the various coefficients, a,, a,, etc., in Eqs. (23) and (24) different related 
exact solutions can be constructed. The solutions for u and v shown in Fig. 9 contain 
a moderate gradient predominantly in the x direction. The following coefficient values 
were used to generate that solution: 

a, = a, = 110.13, a2 = a, = 0, a, = 1.0, 

k= 5, x0= 1, Re = 10. 

The form of the Burgers’ equations represented by Eq. (2) does not permit use of the 
group representation for the convective terms discussed earlier. However, a group 
representation is possible for the inhomogeneous form of the Burgers’ equations, in 
which a source term is included to eliminate the additional terms associated with the 
“divergence” form for the convective terms 

and 

u, + (u2>, + W), - & @x.x + q,) = sx. (25) 

v, t (uu), + (v'), - &(vxx + v,,) = SY, (26) 
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FIG. 9. Exact steady-state solutions of the two-dimensional Burgers’ equations with a moderate 
internal gradient. 
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where the source terms, SX and SY, are given by 

SX = 0.5 Re u(u’ + u*), SY = 0.5 Re v(u’ + u’). (27) 

The exact steady-state solutions of Eqs. (25) and (26) are given by Eqs. (23) and 
(24). Equations (25) and (26) with Dirichlet boundary conditions given by Eqs. (23) 
and (24), are solved numerically to compare the accuracy, economy, and 
computational efficiency of the computational schemes shown in Table VIII. 

All the finite element schemes described in Table VIII have used Lagrangian shape 
functions on a rectangular mesh. For all the finite element schemes a trial solution 
has been introduced for the source terms directly, e.g., 

SX = 2: Nj(X2 Y) Sx j 3 
.i 

where Nj are linear or quadratic shape functions. It is well established that this 
procedure is consistent [ 3 1 ] with the use of the same order of trial functions for u 
and u and introduces an important economy 131. Clearly the treatment of the source 
terms is equivalent to the group representation of the convective terms. 

To obtain steady-state solutions of Eqs. (25) and (26) a time-split algorithm I17 ] 
has been constructed. This entails the repeated factorisation and solution, using a 
generalised Thomas algorithm, of a linear system of equations along each grid line in 
the x and y directions. Conceptually the time-split algorithm can be interpreted as a 
generalised ADI method 1321. 

The exact solutions, Eqs. (23) and (24), have provided the starting solution so that 
relatively few time steps are required to obtain the exact solutions of the algebraic 
system of equations. Convergence was assumed if the rms steady-state residual was 
less than 1 x 10-9. Typically this was achieved in 20 to 30 time steps. 

3.2.1. Relative Execution Times 

The execution time per time step was taken as a measure of the economy of the 
various schemes. The execution time per time step is dominated by the evaluation of 
the steady-state residual; this is required once per time step. Consequently whether 
the steady-state equations are solved iteratively or with a pseudotransient procedure, 

TABLE VIII 

Schemes for Solving the Two-Dimensional Burgers’ Equations 

Scheme Description 

3-FD 
LFE(C) 
LFE(G) 

QWG) 
5-FD 

Three-point finite difference formulae 
Conventional linear finite element representation 
Linear group f.e. representation for u’, 24*, etc. 
Quadratic group f.e. representation for u’, UC, etc. 
Five-point finite difference formulae 

58l/Sl/l-I3 
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as in the present situation, the execution time per time step will give a reasonable 
indication of the relative economy of the various schemes shown in Table VIII. 

Solutions to Eqs. (25) and (26) have been obtained on a rectangular mesh, 
-1 < x < 1, 0 < y < x/6k, with a uniform grid in each direction. The relative 
execution times for the various schemes with increasing mesh refinement is shown in 
Table IX. The results were obtained on a CYBER-172. 

The results shown in Table IX indicate that the finite element schemes are less 
economical than comparable finite difference schemes. The conventional linear finite 
element formulation is about seven times less economical than the three-point finite 
difference scheme and the linear group finite element representation is about two and 
a half times less economical. The quadratic finite element scheme and the five-point 
finite difference scheme are typically two and a hafj” to three times less economical 
than the linear finite element or three-point finite difference schemes respectively. 

The poor economy of the conventional finite element method comes from the inef- 
ficient treatment of the convective terms. Disregarding this method the relative 
execution times of the other methods correspond approximately to the relative 
number of nonzero terms in each row shown in Table VII. 

3.2.2. Convergence Properties and Accuracy 

To permit a direct comparison of the finite difference and finite element solutions, 
rms errors in the nodal solutions for u are shown in Figs. 10, 12, and 14. The rms 
errors in the solutions for u are typically 25% of those for the u solutions and 
otherwise follow the same trend with mesh size and method. 

For a moderate internal gradient the variation in the rms error with mesh size is 
shown in Fig. 10. The corresponding exact solution for a moderate internal gradient 
is shown in Fig. 9. 

The convergence properties of the various schemes conform to Table II, at least on 
a sufficiently refined mesh. However, the two-dimensional results do not demonstrate 
the same level of agreement as the one-dimensional results. 

For a given mesh size the 3-FD scheme is least accurate and the 5-FD scheme is 
most accurate. The LFE(C) scheme is slightly more accurate that the LFE(G) 

TABLE IX 

Comparison of Relative Execution Times per Time Step 

Mesh 

6X6 
7x1 

11 x 11 

21 x21 

41 x41 

AX 3 FD LFE(C) LFE(G) Q=(G) 5-FD 
- 

0.4 1.0 4.9 2.2 2.9 
0.3333 7.9 

0.2 4.0 25.3 10.2 25.9 13.0 

0.1 16.1 I1 1.2 45.3 110.7 53.9 

0.05 67.8 478.1 189.8 464. I 224.7 
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FIG. 10. Spatial convergence properties for a moderate internal gradient; Re = 10. 

scheme on a coarse mesh and slightly less accurate on a refined mesh. A surprising 
result is that QFE(G) is less accurate than the LFE(G) scheme. However, it may be 
more accurate on a sufficiently refined mesh. On a relatively coarse mesh the 3-FD, 
LFE(G), and 5-FD schemes are all demonstrating comparable computational 
efficiency. However, on a very refined mesh the 5-FD scheme is more efficient than 
the other schemes. 

An exact solution, demonstrating a severe internal gradient, is shown in Fig. 11. To 
generate the results the following parameter values were used in Eqs. (23) and (24) 

a, = a, = 1.2962 x 1013, a2 = a3 = 0, a4 = 1.0, 

k = 25, x0= 1, Re = 50. 
(29) 

The corresponding rms errors in the computational solutions for u are shown in 
Fig. 12. 

The results indicate that all schemes produce nominally second-order convergence 
and that higher order schemes are not generating more accurate solutions even on a 
refined mesh. On a coarse mesh the 3-FD scheme is the most efficient scheme and on 
a refined mesh the 3-FD and LFE(G) are the most efficient schemes. In terms of the 
number of mesh points to represent the gradient, Ax = 0.05 for the severe internal 
gradient is approximately equivalent to Ax = 0.20 for a moderate internal gradient. 

The exact solution shown in Fig. 13 includes a moderate gradient for u in the x 
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FIG. 1 I. Exact steady-state solutions of the two-dimensional Burgers’ equations with a severe 
internal gradient. 
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FIG. 12. Spatial convergence properties for a severe internal gradient; Re = 50. 

direction adjacent to the right-hand boundary. To generate this solution the following 
parameter values were used in Eqs. (23) and (24) 

a,=a, =0.011013, a, = UJ = 0, a, = 1.0, 
(30) 

k= 5, x0 = 1.0, and Re = 10. 

The errors in the computational solutions for u are shown in Fig. 14. 
The relative accuracies and computational efftciencies correspond approximately to 

those for the moderate internal gradient shown in Fig. 10. However, for the moderate 
boundary gradient the LFE(C) scheme generates more accurate results than the 
LFE(G) scheme on a refined mesh, although less efficiently. 

We conclude this section with the observation that on a coarse mesh, or &eve 
sharp gradients are expected, the 3-FD or LFE(G) schemes are the most efficient. 
On a refined mesh the 5--FD scheme is most effkient. 

4. DISCUSSION 

Because of their similarity to the momentum equations that govern incompressible, 
viscous fluid flow, Burgers’ equations have been used to compare the various finite 
element and finite difference methods. However, Burgers’ equations have the 
advantage of possessing easily computed exact solutions. 

Viscous flow past an obstruction or adjacent to a wall is characterised by two 
different length scales. Consequently flow fields demonstrate rapid changes in the 
velocity components over short distances, i.e., severe gradients. 
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FIG. 13. Exact steady-state solutions of the two-dimensional Burgers’ equations with a moderate 
boundary gradient. 



( ‘ 2  

Cl =  LFE ( G )  

J,., ix, , w , ( ” , , , , 
0.40 0.60 0.60 1.00 1.20 I.40 

-LOG (10)0X 

FIG. 14. Spatial convergence properties for a moderate boundary gradient; Re = 10. 

The errors in a computational solution are largest, typically, where significant 
gradients in the dependent variables occur. Thus solutions to Burgers’ equation with 
severe gradients in the interior or adjacent to a boundary can be expected to provide 
guidance for the behaviour of the various computational schemes applied to real fluid 
flows. 

The solutions to the one-dimensional Burgers’ equation (Section 2) indicate that 
quadratic kite element and five-point finite difference schemes are generally 
computationally more efficient than linear finite element or three-point finite 
difference schemes. 

The efficiency has been compared on sufficiently coarse meshes to be appropriate 
to practical applications. The convergence data (e.g., Fig. 3 or 7) suggests that as the 
mesh is refined the computationally most efficient order increases. This is because the 
accuracy increases more rapidly for higher order schemes as the mesh is relined 
whereas the reduction in economy is relatively small. 

As indicated by Table III the quadratic finite element scheme is only 11% less 
economical than the linear finite element scheme and the five-point finite difference 
scheme is only 17 % less economical than the three-point scheme. 

The relatively small penalty in reduced economy in using a higher order 
formulation, that occurs in one dimension, is not a feature of two-dimensional 
calculations. In two dimensions the quadratic finite element scheme is about 150% 
less economical than the linear finite element scheme and the live-point finite 
difference scheme i’s about 250% less economical than the three-point finite difference 
scheme. 
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In one dimension the relative computational efficiency of finite difference and finite 
element schemes depends on whether the problem is steady or unsteady. For steady 
problems the mass matrix M in Eq. (8) has no influence on the accuracy. Not 
surprisingly, steady solutions of the modified Burgers’ equation were obtained most 
efficiently by the live-point finite difference scheme. However, the transient solutions 
of Burgers’ equation were obtained most efficiently by the quadratic finite element 
scheme. 

For multidimensional problems the nature of the finite element method gives rise to 
connected nodes in the total region (all dimensions) surrounding the node at which 
the equation is formed. Where nonlinearities arise, as in the convective terms, a 
product of connected nodes occurs within each element, unless the group represen- 
tation is intrduced. In contrast the finite difference method only involves nodes 
appropriate to the direction of the derivative. For nonderivative terms only a single 
nodal value is required. 

We expect the execution time to depend on the number of nonzero terms in the 
steady-state residual, whether an unsteady or a steady problem is being considered. 
Consequently we find that finite difference methods are typically more economical in 
two dimensions, than finite element methods (Table VIII), even after the group 
representation [ 181 is introduced. The linear group finite element representation is 
about 150% less economical than the three-point finite difference scheme in two 
dimensions. In one dimension it was 7% more economical. 

From a consideration of the number of contributing nodes (Table VII) it is clear 
that the finite element method will be progressively less economical in comparison 
with the finite difference method as the order or the number of dimensions is 
increased. 

For the two-dimensional steady solutions of Burgers’ equations the five-point finite 
difference scheme is considerably more accurate than the three-point finite difference 
scheme. However, the linear and quadratic finite element schemes are of comparable 
accuracy even on a refined mesh. 

Because of the relatively poor economy finite element schemes are typically 
computationally less efficient than finite difference schemes. However, the linear 
group finite element representation is competitive on a coarse mesh or if a severe 
gradient is present. The conventional finite element method is never competitive due 
to the uneconomical treatment of the convective terms. 

In attempting to extrapolate the present results for Burgers’ equaions to the 
Navier-Stokes equations a certain amount of caution is necessary. First the 
inhomogeneous two-dimensional Burgers’ equations do not include pressure gradient 
terms but do include source terms. Also no account is taken of the continuity 
equation. 

Second fluid flow around bodies of nonsimple shape introduces the complication of 
an irregular mesh. Third the boundary conditions for a flow problem will include, 
typically, Neumann boundary conditions on downstream boundaries. 

The additional complexities of a real fluid flow will not influence the relative 
economy of the finite element and finite difference methods. The relative economy is 
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a property of the method and not problem dependent. However, the additional 
complexities may alter the relative accuracies and convergence rates of the two 
methods that have been reported here for Burgers’ equations, with predominantly 
uniform meshes. 

5. CONCLUSIONS 

Solutions have been obtained to the one- and two-dimensional Burgers’ equations 
with boundary conditions that generate moderate to severe gradients predominantly 
in the flow direction. Linear, quadratic, and cubic finite element schemes have been 
compared with three-, live-, and seven-point finite difference schemes for both steady 
and unsteady problems on the basis of convergence rate, economy, accuracy, and 
computational efficiency. 

The following specific conclusions have been reached: 

(i) Theoretical convergence rates are achieved unless very severe gradients or 
discontinuities occur. 

(ii) In one dimension higher order schemes are almost as economical as three- 
point schemes. In multidimensions higher order schemes (particularly finite element 
schemes) are much less economical than three-point schemes. 

(iii) In multidimensions finite element schemes are less economical than finite 
difference schemes, due to the integral construction of the algebraic formulae. 

(iv) The conventional finite element treatment of nonlinearities, like the 
convective terms, adds a further economic penalty. This penalty can be avoided 
without loss of accuracy by adopting the group finite element representation I18 I. 

(v) Steady solutions of the modified one-dimensional Burgers’ equation are 
obtained most efficiently by the live-point finite difference scheme. Transient 
solutions of the one-dimensional Burgers’ equation are obtained most efficiently by 
the quadratic group finite element representation. 

(vi) For two-dimensional steady solutions of the inhomogeneous Burgers’ 
equation the three-point finite difference and the linear group finite element represen- 
tation are most efficient on a coarse mesh or if a severe gradient is present. For a 
refined mesh the five-point finite difference scheme is most efficient. 

REFERENCES 

1. B. SWARTZ, in “Mathematical Aspects of Finite Elements in Partial Differential Equations” (C. de 
Boor, Ed.), pp. 297-3 12, Academic Press, New York, 1974. 

2. B. SWARTZ AND B. WENDROFF, SIAM J. Numer. Anal. 11 (1974), 979. 
3. W. E. CULHAM AND R. S. VARGA, Sot. Pet. Eng.J. II (1971), 374. 
4. T. R. HOPK!NS AND R. WAIT, Int. J. Numer. Methods Eng. 12 (1978), 1081. 
5. D. B. HAIDVOGEL, A. R. ROBINSON, AND E. E. SCHULMAN, J. Compuf. PhJas. 34 (1980), I. 



188 C. A. J. FLETCHER 

6. S. A. ORSZAG, .I. Fluid Mech. 49 (1971), 75. 
7. P. M. GRESHO, R. L. LEE, AND R. L. SANI, “Finite Elements in Fluids,” Vol. 3, pp. 335-350, Wiley. 

London, 1978. 
8. M. 0. SOLIMAN AND A. J. BAKER, Comput. Fluids 9 (1981), 43. 
9. M. 0. SOLIMAN AND A. J. BAKER, Comput. Methods. Appl. Mech. Eng. 28 (198 I), 81. 

10. C. A. J. FLETCHER AND R. W. FLEET. in “Eighth Int. Conf. on Num. Meth. in Fluid Dynamics.” 
Aachen, June 1982. 

11. R. W. FLEET AND C. A. J. FLETCHER, in “Fourth Int. Conf. in Australia on Finite Element 
Methods,” (P. Hoadley, Ed.), pp. 59-63, Melbourne, Aug. 1982. 

12. S. Y. TUANN AND M. D. OLSON, J. Comput. Phys. 29 (1978), I. 
13. C. A. J. FLETCHER, in “Numerical Solution of Partial Differential Equations” (J. Noye, Ed.). 

pp. 139-225, North-Holland, Amsterdam, 1982. 
14. E. R. BENTON AND G. W. PLATZMAN, Q. Appl. Math. 30 (1972), 195. 
15. C. A. J. FLETCHER, Int. J. Numer. Methods Fluids, (1983), to appear. 
16. J. T. ODEN AND J. N. REDDY, “An Introduction to the Mathematical Theory of Finite Elements,” 

Wiley, New York, 1976. 
17. C. A. J. FLETCHER, “Computational Galerkin Methods,” Springer-Verlag, Heidelberg, 1983. 
18. C. A. J. FLETCHER, Comput. Methods Appl. Mech. Eng. (1983), to appear. 
19. B. SWARTZ AND B. WENDROFF, Math. Comput. 23 (1969), 37. 
20. C. A. J. FLETCHER AND M. HOLT. J. Fluid Mech. 74 (1976). 561. 
21. R. C. Y. CHIN, G. W. HEDSTROM, AND K. E. KARLSSON, Math. Comput. 33 (1979). 647. 
22. C. A. J. FLETCHER, J. Comput. Phys. 33 (1979), 301. 
23. C. A. J. FLETCHER, Comput. Methods. AppL Mech. Eng. 30 (1982), 307. 
24. I. CHRISTIE, D. F. GRIFFJTHS, A. R. MITCHELL, AND J. M. SANZ-SERNA. Inst. Math. Appl. J. 

Numer. Anal. I (1981). 253. 
25. K. W. MORTON, in “The State of the Art in Numerical Analysis” (D. Jacob, Ed.), pp. 699-756. 

Academic Press, New York/London, 1977. 
26. C. A. J. FLETCHER. in “Finite Element Flow Analysis” (T. Kawai. Ed.), pp. 1003-1010. Univ. of 

Tokyo Press. 1982. 
27. A. MAJDA AND S. OSHER, Commun. Pure Appl. Math. 30 (1977), 671. 
28. A. J. BAKER AND M. 0. SOLIMAN, J. Comput. Phys. 32 (1979), 289. 
29. J. D. COLE. Q. Appl. Math. 9 (1951). 225. 
30. A. JENNINGS, “Matrix Computation for Engineers and Scientists.” p. 152, Wiley. London. 1977. 
31. G. STRANG AND G. J. FIX. “An Analysis of the Finite Element Method.” p. 30. Prentice-Hall. 

Englewood Cliffs. N. J.. 1973. 
32. A. R. GOURLAY. it1 “The State of the Art in Numerical Analysis” (D. Jacob, Ed.), pp. 757-796. 

Academic Press, New York/London. 1977. 


